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University of California, Berkeley
Physics H7C Fall 2002 (Strovink)

PROBLEM SET 1

1. (Taylor and Wheeler problems 5 and 17b)
According to a scientist in the laboratory, “event
G occurred before event H”. To what extent
might this be true universally?
(a.)
Prove that the temporal order of two events in
the laboratory is the same as in all other inertial
(Lorentz) frames if and only if the two events
have either a timelike or a lightlike separation.
(b.)
If two events G and H have a timelike separa-
tion, show that a Lorentz frame can be found in
which the two events occur at the same place.
In that frame, show that the time between the
two events is equal to the proper time interval
that separates them.

2. Inertial reference frames S ′ and S coincide at
t′ = t = 0. Frame S ′ moves with velocity βc x̂
with respect to S. Leaving aside the y and z co-
ordinates, which are the same in both systems,
the Lorentz transformation between S and S ′ is
given by (

ct′

x′

)
= Λ

(
ct
x

)
,

where Λ is a 2×2 matrix.
(a.)
Show that the Lorentz transformation found in
BFG (Eqs. (2-26) and (2-27)) is equivalent to
writing

Λ =
(

γ −γβ
−γβ γ

)
,

where

γ ≡ 1√
1− β2

.

(b.)
Using the properties of the hyperbolic functions,
show that the expression for Λ in part (a.) is
equivalent to

Λ =
(

cosh η − sinh η
− sinh η cosh η

)
,

where η, the boost, is

η ≡ tanh−1 β .

(c.) The inverse Lorentz transformation is given
by (

ct
x

)
= Λ−1

(
ct′

x′

)
,

where
Λ−1(β) = Λ(−β) .

Show that a Lorentz transformation followed by
its inverse restores the original ct and x, i.e.

Λ−1Λ =
(
1 0
0 1

)
≡ I ,

where I is the unit transformation.

3. BFG problem 2.18.

4. (Taylor and Wheeler problem 51)
The clock paradox, version 3.
Can one go to a point 7000 light years away –
and return – without aging more than 40 years?
“Yes” is the conclusion reached by an engineer
on the staff of a large aviation firm in a recent
report. In his analysis the traveler experiences a
constant “1-g” acceleration (or deceleration, de-
pending on the stage reached in her journey).
Assuming this limitation, is the engineer right in
his conclusion? (For simplicity, limit attention
to the first phase of the motion, during which
the astronaut accelerates for 10 years – then
double the distance covered in that time to find
how far it is to the most remote point reached
in the course of the journey.)
(a.)
The acceleration is not g = 9.8 meters per sec-
ond per second relative to the laboratory frame.
If it were, how many times faster than light
would the spaceship be moving at the end of
ten years (1 year = 31.6 × 106 seconds)? If the
acceleration is not specified with respect to the
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laboratory, then with respect to what is it spec-
ified? Discussion: Look at the bathroom scales
on which one is standing! The rocket jet is al-
ways turned up to the point where these scales
read one’s correct weight. Under these condi-
tions one is being accelerated at 9.8 meters per
second per second with respect to a spaceship
that (1) instantaneously happens to be riding
alongside with identical velocity, but (2) is not
being accelerated, and, therefore (3) provides
the (momentary) inertial frame of reference rel-
ative to which the acceleration is g.
(b.)
How much velocity does the spaceship have after
a given time? This is the moment to object to the
question and to rephrase it. Velocity βc is not
the simple quantity to analyze. The simple quan-
tity is the boost parameter η. This parameter is
simple because it is additive in this sense: Let the
boost parameter of the spaceship with respect to
the imaginary instantaneously comoving inertial
frame change from 0 to dη in an astronaut time
dτ . Then the boost parameter of the spaceship
with respect to the laboratory frame changes in
the same astronaut time from its initial value η
to the subsequent value η+dη. Now relate dη to
the acceleration g in the instantaneously comov-
ing inertial frame. In this frame g dτ = c dβ =
c d(tanh η) = c tanh (dη) ≈ c dη so that

c dη = g dτ

Each lapse of time dτ on the astronaut’s watch is
accompanied by an additional increase dη = g

c dτ
in the boost parameter of the spaceship. In
the laboratory frame the total boost parame-
ter of the spaceship is simply the sum of these
additional increases in the boost parameter. As-
sume that the spaceship starts from rest. Then
its boost parameter will increase linearly with
astronaut time according to the equation

cη = gτ

This expression gives the boost parameter η of
the spaceship in the laboratory frame at any
time τ in the astronaut’s frame.
(c.)
What laboratory distance x does the spaceship

cover in a given astronaut time τ? At any
instant the velocity of the spaceship in the lab-
oratory frame is related to its boost parameter
by the equation dx/dt = c tanh η so that the
distance dx covered in laboratory time dt is

dx = c tanh η dt

Remember that the time between ticks of the
astronaut’s watch dτ appear to have the larger
value dt in the laboratory frame (time dilation)
given by the expression

dt = cosh η dτ

Hence the laboratory distance dx covered in as-
tronaut time dτ is

dx = c tanh η cosh η dτ = c sinh η dτ

Use the expression cη = gτ from part b to obtain

dx = c sinh
(gτ

c

)
dτ

Sum (integrate) all these small displacements dx
from zero astronaut time to a final astronaut
time to find

x =
c2

g

[
cosh

(gτ

c

)
− 1

]

This expression gives the laboratory distance x
covered by the spaceship at any time τ in the
astronaut’s frame.
(d.)
Plugging in the appropriate numerical values,
determine whether the engineer is correct in his
conclusion reported at the beginning of this ex-
ercise.

5. Starting from the relativistic addition the-
orem for velocities, BFG Eq. (2-41), prove the
addition formula for hyperbolic tangents:

tanh (a − b) =
tanh a − tanh b

1− tanh a tanh b
.
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6. The now retired Bevatron at Berkeley
Lab is famous for having produced the first
observed antiprotons (you may have glimpsed
white-maned Nobelist Owen Chamberlain, one
of the first observers in 1958, being helped to
his seat at Physics Department colloquia). An
economical reaction for producing antiprotons is

p+ p → p+ p+ p + p̄ ,

where the first proton is part of a beam, the sec-
ond is at rest in a target, and p̄ is an antiproton.
Because of the CPT theorem, both p and p̄ must
have the same mass (mc2 = 0.94× 109 eV).

At threshold, all four final state particles
have essentially zero velocity with respect to
each other. What is the beam energy in that
case? (The actual Bevatron beam energy was
6× 109 eV).

7. “Surface” muon beams are important tools for
investigating the properties of condensed mat-
ter samples as well as fundamental particles.
Protons from a cyclotron produce π+ mesons
(quark-antiquark pairs) that come to rest near
the surface of a solid target. The pion then de-
cays isotropically to an (anti)muon (µ+) and a
neutrino (ν) via

π+ → µ+ + ν .

Some of the muons can be captured by a beam
channel and transported in vacuum to an exper-
iment. In the limit that the mother pion decays
at the surface of the target (so that the daughter
muon traverses negligible material), the beam
muons have uniform speed. For the purposes of
this problem, consider a muon to have 3

4 of the
rest mass of a pion; neglect the neutrino mass.
Show that the surface muons travel at a speed
which is a fraction β0 = 0.28 of the speed of light.

8. As described in the TESLA Design Re-
port written in 2001 at the DESY laboratory
in Hamburg, Germany, electrons of rest mass
mc2 = 0.5×106 eV would be accelerated to a to-
tal energy of 0.25×1012 eV over an active length
of 10.9 km. (Positrons (anti-electrons), after
similar acceleration, would collide head-on with

the electrons. Individual electrons and positrons
would mutually annihilate, releasing 0.5 × 1012

eV of energy in a pure form that existed just af-
ter the Big Bang.)
(a.)
To what boost η are the electrons ultimately
brought?
(b.)
Assuming that the electrons are subjected to a
uniform acceleration as observed in their comov-
ing inertial frame, how many g’s of acceleration
do they feel?
(c.)
As observed at the DESY lab, for what time in-
terval is each electron in flight? What is the
corresponding proper time interval? Evaluate
the ratio of the two intervals (a sort of average
γ factor).


